среда, 10 февраля 2010 г.

Исследователи Университета Deakin проникли в виртуальную реальность.

Исследователи из Университета Deakin полагают, что их новая разработка – «Haptic Gripper», который использует тактильные (сенсорные) технологии для захвата и манипулирования объектами в виртуальном пространстве, откроет новые перспективы в сфере образования, дизайна и производства. Возможно, что новшество позволит в ближайшем будущем обучать студентов-медиков, используя виртуальные органы. Примечательно, что «Haptic Gripper» был признан победителем телевизионной программы The New Inventors на телеканале ABC.
Тактильная технология позволяет «реально» дотрагиваться до объектов в виртуальном пространстве. Принцип работы большинства современных сенсорных устройств основан на использовании единственной точки контакта, что по своему эффекту можно сравнить с касанием объекта всего одним пальцем, при этом вы не можете «взять» его и «манипулировать» им.
«Haptic Gripper» подсоединяется к существующим одноконтактным устройствам и обеспечивает многоточечный контакт, что позволяет, используя большой и указательный пальцы, «чувствовать» объекты, их форму и текстуру. Новое устройство также обеспечивает сенсорную обратную связь, что значительно усиливает ощущения от манипулирования объектами в реальном пространстве. Многоточечная тактильная технология имеет большой потенциал в самых различных сферах и отраслях. В частности, существует возможность проведения телеоперационных хирургических вмешательств, при этом хирурги смогут проводить дистанционные операции. Инженеры и дизайнеры получат возможность для манипулирования твердыми и гибкими объектами в виртуальном пространстве, при этом они смогут не только увидеть плоды своего труда, но и почувствовать их. По мнению разработчиков, уже в ближайшем будущем новая технология позволит людям дотронуться и почувствовать поверхность Марса или даже поздороваться с марсианами!

Мозговые интерфейсы.

Для того, чтобы при помощи одной только ментальной энергии поднять стакан на несколько футов, волшебникам приходилось тренироваться по несколько часов в день. Иначе принцип рычага легко мог выдавить мозг через уши.
Терри Пратчетт, "Цвет Волшебства"
Очевидно, венцом человеко-машинного интерфейса должна стать возможность управления машиной одним только усилием мысли. А получение данных прямо в мозг - это уже вершина того, чего может достичь виртуальная реальность. Идея эта не нова и уже много лет фигурирует в самой разнообразной фантастической литературе. Тут и практически все киберпанки с прямым подключением к кибердекам и биософтами. И управление любой техникой посредством стандартного мозгового разъема (например, у Сэмюэля Дэлани в романе "Нова"), и масса всяких других интересных вещей. Но фантастика - это хорошо, а что делается в реальном мире?
Оказывается, разработка мозговых интерфейсов (BCI или BMI - brain-computer interface и brain-machine interface) идет полным ходом, хотя об этом мало кто знает. Конечно, успехи весьма далеки от того, про что пишут в фантастических романах, но, тем не менее, они вполне заметны. Сейчас работы над мозговыми и нервными интерфейсами, в основном, ведутся в рамках создания различных протезов и устройств для облегчения жизни частично или полностью парализованным людям. Все проекты можно условно поделить на интерфейсы для ввода (восстановление или замена поврежденных органов чувств) и вывода (управление протезами и другими устройствами). Над двунаправленными системами взаимодействия с мозгом, насколько я знаю, не работает пока никто. Еще один важный критерий, по которому можно разделить существующие разработки, - степень травматичности, то бишь, необходимость хирургического вмешательства. Во всех случаях прямого ввода данных необходимо производить операцию по вживлению в мозг или нервы электродов. В случае вывода можно обойтись внешними датчиками для съема электроэнцефалограммы (ЭЭГ). Впрочем, ЭЭГ - инструмент достаточно ненадежный, поскольку череп сильно ослабляет мозговые токи и получить можно только очень сильно обобщенную информацию. В случае вживления электродов можно снимать данные непосредственно с нужных мозговых центров (например, двигательных). Но такая операция - дело нешуточное, так что пока эксперименты ведутся только на животных. Однако, перейдем к живым примерам.
Ввод
Сначала поговорим о вводе информации. Уже достаточно давно созданы и используются такие устройства, как слуховые имплантанты (cochlear implant, также известный как улитковый имплантант), предназначенные для восстановления слуха у людей с частично поврежденным слуховым нервом (то есть для тех, кому обычный слуховой аппарат уже не поможет). Действует это устройство следующим образом - во внутреннее ухо вживляется массив электродов (до нескольких десятков штук), которые электрическими импульсами раздражают уцелевшую часть слухового нерва и таким образом создают в мозгу ощущение звука. Коробочка с электроникой, генерирующей эти импульсы, вживляется в черепную кость за ухом. Сигналы на нее подаются с микрофона и специального речевого процессора через индукционную катушку.


Схема установки слухового имплантанта


Устройство, конечно, не полностью восстанавливает слух, но большинство прооперированных начинают воспринимать на слух речь и слышать окружающие звуки. Некоторые даже могут свободно говорить по телефону и слушать музыку.
Первые эксперименты по воздействию на слуховой нерв электрическими импульсами с целью восстановления слуха проводились еще в 50-х годах. В 70-х начали делать первые пробные операции по вживлению слуховых имплантантов, а в начале 80-х появились первые коммерческие устройства, и операции по их вживлению превратились из экспериментальных во вполне рутинные. Сейчас разработка и производство слуховых имплантантов уже стали самостоятельной частью медицинского бизнеса и занимается этим несколько десятков различных фирм. Так что эту технологию можно считать вполне сформировавшейся.
Более сложную задачу представляет собой ввод в мозг зрительной информации и создание зрительных протезов. В первую очередь, это связано со значительно более сложной организацией зрительных центров, по сравнению со, скажем, слуховыми. Как выяснилось, для передачи более-менее правдоподобного звукового ощущения достаточно использовать порядка 20-30 каналов одновременно (причем, большее влияние на качество звука оказывает даже не количество каналов, а правильное расположение соответствующих электродов). А сколько каналов надо, чтобы передать хотя бы примитивную картинку в VGA-разрешении - 320x240 получается 76 тысяч пикселов, и вживить такой массив электродов в мозг пока просто нереально. Но работы ведутся. В частности, Добеллевским институтом (Dobelle Institute, www.dobelle.com) еще с 70-х годов разрабатывается система искусственного зрения Artificial Vision System, предназначенная для восстановления зрения у слепых. Система эта представляет собой миниатюрную видеокамеру, закрепленную на оправе очков.


Сигнал с камеры обрабатывается портативным компьютером и передается на разъем, вмонтированный в задней части черепа пациента.


Оттуда он, при помощи имплантированных электродов, поступает непосредственно в область мозга, отвечающую за зрение (visual cortex). Конечно, о полном восстановлении зрения речь не идет - пациенты видят только что-то вроде белых точек, очерчивающих предметы (так называемые phosphenes). Однако, научившись интерпретировать даже такую неполную визуальную информацию, некоторые из них уже могут свободно перемещаться по помещению и даже медленно водить машину (правда, только на территории института). Скорость обновления кадров составляет от 1 до 5 в секунду. Операция уже проводится коммерчески и оценивается примерно в $120K. Надо сказать, что данная технология позволяет вернуть зрение только людям, потерявшим его в результате несчастных случаев - то есть тех, кто уже "умел видеть" раньше.
Первая имплантация такого зрительного протеза была проведена еще в 1978 году, однако это была, скорее, проверка идеи на практике (компьютер, обрабатывающий изображение, тогда занимал почти целую комнату и ни о какой мобильности речь даже не шла, да и картинка состояла всего из нескольких точек). В 2000 году была произведена имплантация улучшенной системы другому пациенту - в этом случае массив электродов позволял формировать порядка 60 точек, что значительно улучшило картинку. В последних операциях, проведенных в Dobelle Institute в 2002-2003 годах, использовались два массива электродов (242 электрода в каждом), имплантированных в оба полушария мозга. Такая система уже позволяет получить картинку, состоящую из нескольких сотен пикселов (предположительно, матрицу 15 на 15). Вообще же считается, что для создания более-менее приличной зрительной картины необходимо хотя бы порядка 1000 пикселов (то есть матрица 30 на 30) и не меньшее количество электродов. Насколько это возможно, покажет время. Но у такой системы есть один несомненный плюс - к ней можно подключить не только простую камеру, но и инфракрасную, ультрафиолетовую, рентгеновскую... Насколько при этом расширятся возможности зрения, трудно даже представить.
Впрочем, Dobelle Institute - не единственное место, где пытаются вводить в мозг визуальную информацию. Порядка десяти других крупных исследовательских групп разрабатывают более-менее аналогичные технологии. Познакомиться с их списком и достижениями можно по адресам www.bioen.utah.edu/cni, www.biomed.brown.edu/Courses/BI108/ BI108_1999_Groups/Vision_Team/Vision.htm. Основные различия заключаются в типе имплантируемых электродов. В случае Dobelle Institute электроды просто накладывались на поверхность мозга и для стимуляции необходимо было подавать достаточно высокие напряжения (порядка 10 вольт, ток несколько миллиампер), что могло спровоцировать припадки наподобие эпилептических. Разрабатываемое, например, в университете Юты устройство должно проникать в мозг на глубину нескольких миллиметров. При этом необходимая сила тока падает до десятков микроампер. Но тут уже возникают трудности с созданием подходящих массивов проникающих электродов и их имплантацией.
Другие возможные способы ввода визуальной информации в мозг - через стимуляцию зрительного нерва или сетчатки. Первым способом особых результатов пока добиться не удалось. Группа ученых из бельгийского University catholique de Louvain имплантировала добровольцу электроды, стимулирующие зрительный нерв, и подтвердила возможность генерировать с его помощью все те же светящиеся точки (phosphenes). Однако управлять изображением им не удалось. С сетчаточными имплантантами дело обстоит лучше. Вот два, пожалуй, самых известных проекта.
В 2000 году группа из университета Иллинойса (University of Illinois) и Чикагского медицинского центра (Chicago Medical Center) провела первую операцию по вживлению в глаза пациентов микросхем искусственной сетчатки. Собственно говоря, искусственная сетчатка - это слишком громко сказано. Пока что группа, состоящая из доктора Алана Чоу (Alan Chow), Голама Пеймана (Gholam Peyman) и Хосе Пулидо (Jose Pulido), имплантировала под сетчатку пациентов (больных retinitis pigmentosa, вызывающей потерю фоточувствительных клеток сетчатки и, как следствие, практически полную потерю зрения) кремниевую микросхему (диаметр около 2.5 миллиметров, толщина 0.002 мм), содержащую порядка 3500 фоточувствительных ячеек (наподобие солнечной батареи). Надо заметить, что имплантант не требует внешнего питания или сигналов, так как электрические импульсы вырабатываются им самим под воздействием попавшего в глаз света (как и в естественных фоторецепторах). Имплантант также не подключается к глазному нерву, а должен стимулировать собственную сетчатку пациента (фактически, только заменять отмершие фоторецепторы). Исследовательская группа вскоре преобразовалась в фирму Optobionics (www.optobionics.com), занимается дальнейшей разработкой своей искусственной сетчатки (она так и называется - Artificial Silicon Retina) и провела операции по ее вживлению 10 пациентам. У всех прооперированных резко улучшилось зрение и не наблюдается никаких побочных последствий вроде инфекций или отторжения имплантанта.
Более интересные проекты разрабатываются в Университете Джона Хопкинса, в MIT, в Гарварде, а также компанией Second Sight (www.2-sight.com) и еще несколькими институтами. Все эти организации работают над созданием так называемого epi-retinal имплантанта, который должен находиться непосредственно на поверхности сетчатки. В остальном, принцип действия очень похож на Artificial Silicon Retina. Массив электродов точно так же стимулирует клетки сетчатки, создавая таким образом изображение. Правда, дальше начинаются отличия. Исходная картинка во всех этих проектах регистрируется внешней видеокамерой, затем обрабатывается компьютером и потом передается на имплантант. Передача во всех случаях предусматривается беспроводная - либо засветка фотодиодов лазером (лазер при этом должен находиться непосредственно перед глазом, например, в очках), либо по радио.


Вот так должен работать сетчаточный имплантант Second Sight


Пока что был испытан только прототип разработки Second Sight. Он представлял собой микросхему размером 5х5 мм, содержащую массив из 16 электродов. Данные на устройство передавались с имплантированного в череп за ухом приемника. Получивший такой имплант доброволец действительно смог видеть световые точки и даже различать отдельные статические предметы - так что опыт оказался вполне успешным. Но об имплантировании устройств высокого разрешения речь пока не идет. И все же, возможно, "цейсовские глаза" не так уж далеки от реальности.
Это были, как я уже сказал, наиболее интересные проекты по вводу информации в человеческий мозг. А в следующий раз поговорим о том, как можно вывести информацию из мозга и использовать ее для управления различными устройствами.
Итак, как же можно управлять компьютером исключительно силой мысли? Оказывается, очень даже легко. Собственно, проблемой управления внешними устройствами при помощи одного только мозга начали заниматься очень давно. Еще в 1967 Эдмонд Деван (Edmond Dewan) проводил эксперименты по считыванию управляющих сигналов с мозга с помощью электроэнцефалографа. Испытуемые научились до определенной степени контролировать амплитуду мозгового альфа-ритма и таким образом передавали отдельные буквы при помощи азбуки Морзе. Первым словом, переданным таким образом на телетайп, было слово "кибернетика". Определенно, назвать мозговым или нервным интерфейсом созданное Деваном устройство нельзя, но оно продемонстрировало возможность осмысленного управления внешним устройством при помощи одной только мысли. Вскоре после этого, в 70-х годах, американское оборонное агентство DARPA (известный рассадник новых технологий) начало исследования по применению техники мысленного контроля для управления боевыми самолетами. Речь тут шла даже не об управлении, а о мониторинге ментального состояния пилота и подстройке самолета под это состояние. Однако через некоторое время работа была остановлена, поскольку тогдашняя электроника не позволяла достичь сколько-нибудь приемлемого практического результата.
Вывод
А теперь посмотрим, насколько успешно удается выводить мозговые сигналы "наружу" и целенаправленно использовать их для управления техникой. Самая, пожалуй, свежая новость на этом фронте - эксперименты с обезьянами в Университете Дьюка (Duke University). Суть экспериментов такая - в двигательные центры мозга обезьяны были вживлены электроды (около 100), регистрирующие его активность. Затем обезьянам была задана относительно простая задачка: при помощи джойстика навести на экране компьютера курсор на заданную точку и потом, сжимая джойстик (он был оборудован датчиком давления), увеличить курсор до заданного размера. Все мозговые импульсы во время выполнения этих заданий записывались и анализировались. За удачное выполнение задания обезьяну награждали глотком вкусного сока. А затем началось самое интересное - джойстик отключили, а передвижения курсора управлялись только мозгом обезьяны. Причем через некоторое время обезьяна это поняла и перестала обращать внимание на джойстик и вообще пользоваться рукой. Курсор она при этом наводила вполне успешно.
Этот эксперимент проводился еще в 2000 году. Основной его целью было сопоставить мозговые сигналы видимым движениям руки и суметь затем точно интерпретировать одну только мозговую активность в предполагаемое движение (причем, в реальном режиме времени). Сейчас эта работа получила свое логическое продолжение. Между компьютером, обрабатывающим мозговые сигналы, и дисплеем была включена механическая рука-манипулятор. Таким образом, обезьяна управляла манипулятором, который затем управлял курсором. Этот опыт прошел вполне успешно, причем обезьяна довольно быстро приспособилась к запаздыванию, которое вызывала инерция руки, и практически стала воспринимать механизм как продолжение своего тела. Ознакомиться с результатами этого исследования можно по адресу www.plosbiology.org/pips/plbi-01-02-carmena.pdf.
Кстати, аналогичный эксперимент с человеком был проведен еще в 1997 году в Университете Элмори. Там имплантировали электроды в двигательные центры нескольких полностью парализованных пациентов (в том числе потерявших способность говорить). Пациенты со временем научились передвигать курсор по экрану компьютера и таким образом общаться с врачами (например, выбирая на экране одну из простых фраз). Имплантант передавал информацию по радио, а питание получал через индукционную катушку прямо через череп - то есть никаких разъемов и проводов. Почитать об этом проекте можно здесь: www.emory.edu/WHSC/HSNEWS/releases/feb99/022399brain.html.
Однако, несмотря на успехи вышеописанной методики, большинство других исследователей все-таки предпочитает не влезать в голову пациенту до такой степени. Поэтому для считывания сигналов, в основном, используется электроэнцефалограмма с последующей обработкой. Например, исследователи из Швейцарского института Dalle Molle и испанского Центра биомедицинских исследований создали прототип кресла-каталки, управляемого силой мысли. Прототип представляет собой колесный робот, связанный с оператором посредством шапочки с электродами и обрабатывающий сигналы компьютера. Для управления используются сигналы электрической активности мозга (аналогично электроэнцефалограмме), так что никакого хирургического вмешательства и вживления электродов не требуется. Как выяснилось, за пару дней операторы научились генерировать вполне стабильные "состояния ума", четко распознаваемые системой и интерпретируемые роботом как команды "вперед", "влево" и "вправо".
Имеется и масса других аналогичных разработок, благо, для работы с энцефалограммами не требуются сложные операции на мозге. Правда, и сложность интерпретации сигналов заметно выше. Кстати, ежегодно даже проводится конкурс на наиболее работоспособный алгоритм обработки ЭЭГ на предмет выделения из нее требуемой информации. Почитать о нем можно здесь: ida.first.fhg.de/~blanker/competition.
Еще один интересный пример применения ЭЭГ продемонстрирован в институте биомедицинской инженерии в Граце (www-dpmi.tu-graz.ac.at). Там "чтение мыслей" при помощи ЭЭГ совместили с электростимуляцией мышц. В результате парализованный пациент смог до определенной степени восстановить контроль над своей рукой.
Пару слов насчет электростимуляции. Как известно, лапка лягушки сокращается под действием электрического тока. А если этот ток подавать с умом, то можно вызывать вполне контролируемый отклик мышц, до некоторой степени симулирующий их естественную работу.
Впрочем, использование ЭГГ уже давно вышло из чисто исследовательской стадии. Сейчас на рынке имеются, как минимум, три коммерческих устройства, позволяющих сопрягать энцефалограф и компьютер. Первой такую штуку под названием Interactive Brainwave Visual Analyser начала выпускать фирма IBVA (www.ibva.com) еще в 1991 году. Устройство предназначалось, в первую очередь, для людей творческих, поэтому сопутствующий софт был, в основном, сосредоточен на манипуляциях с графикой и звуком (сигналы можно было выводить в формате MIDI). Впрочем, можно было применять это устройство и для управления компьютером (хотя на это создатели, похоже, как раз не упирали) и для всяких достаточно нетривиальных вещей вроде технологий быстрого обучения (чтобы отслеживать состояние мозга в процессе и не терять концентрации) или решения конфликтов (сила воли вместо банального мордобоя).
Несколько позже появилось еще одно похожее устройство ввода, которое я опишу подробнее (поскольку все разработки очень похожи друг на друга и по устройству, и по способу функционирования). Итак, компания Brain Actuated Technologies (www.brainfingers.com) выпустила на рынок девайс под названием Cyberlink Interface. Cyberlink Interface берет управляющие сигналы с трех датчиков, размещенных на лбу пользователя (на модной головной повязке, как и у IBVA). Лоб выбран потому, что с кожи хорошо снимать биопотенциалы, вызванные работой мозга и связанной с ней активностью лицевых мышц. Всего таких сигналов снимается 14 - десять непрерывных (похожих на получаемые при электроэнцефалографии) и четыре дискретных (отслеживаются движения глаз влево/вправо и мускульная активность лица). Соответственно, можно получить вполне приличный набор средств управления курсором и подачи команд (настройку можно произвести на уровне драйвера, аналогичного драйверу мыши в Windows). С датчиков сигналы попадают в управляющий блок, где разделяются по частотам, обрабатываются DSP, и затем уже выделенные сигналы передаются по последовательному порту в компьютер, где интерпретируются драйвером. Представители фирмы утверждают, что во время испытаний люди, знакомые с таким интерфейсом, могли меньше чем за 4 секунды точно навести курсор на случайным образом появляющийся на экране квадрат размером 32х32 пиксела. Не мышь, конечно, но тоже неплохо. А вот скорость реакции в задачах, требующих нажатия кнопки мыши, у пользователей Cyberlink на 15% превосходила обычных "мышинистов". Предназначено это устройство, как видите, в первую очередь, для управления компьютером в качестве устройства ввода и нацелено на тех, кто не может работать с компьютером нормально. Стоит это устройство около $2000.
Итого, что же мы имеем. Технология прямого взаимодействия с компьютером пока что находится практически в зачаточном состоянии, однако активно развивается. Хотелось бы надеяться, что это развитие приведет к ощутимым результатам в ближайшие 10-20 лет. Тем более, что предпосылки для этого есть. Проблемы с обработкой сигналов более-менее решились с появлением мощных компьютеров. Миниатюризация электроники и развитие беспроводных интерфейсов вполне способны решить и проблемы с мобильностью таких устройств. Есть надежда, что успехи нанотехнологий и микромеханических устройств, наконец, позволят создать совершенно новое поколение электродов и технологий имплантации (например, самособирающиеся прямо в мозгу датчики). А там уже недалеко и до настоящих киборогов.

Полное виртуальное погружение обещают через 5 лет

полное погружение в виртуальную реальность





Британские ученые создают технологию, которая сможет передавать информацию на все пять органов чувств человека и, таким образом, целиком погрузить его в виртуальную реальность. Первый виртуальный шлем с такими возможностями планируется выпустить в течение 3-5 лет. Его стоимость составит около $3 тыс.
Ученые из двух британских университетов разрабатывают технологию, которая сможет передавать информацию на все пять органов чувств человека и, таким образом, целиком погрузить его в виртуальную реальность. Работа осуществляется в рамках проекта Towards Real Virtuality, финансированием которого занимается правительство Великобритании, а одним из партнеров выступает корпорация IBM.
Как известно, человек обладает пятью органами чувств – это глаза, уши, нос, язык и кожа. Глаза позволяют видеть, уши (включая вестибулярный аппарат) – слышать и ощущать чувство равновесия, нос и язык – чувствовать запах и вкус, кожа отвечает за осязание. На сегодняшний день ни одно устройство в мире не способно возбуждать все эти органы одновременно. Следовательно, полное погружение в виртуальную реальность недостижимо – человек всегда будет знать о том, что он находится в определенном помещении, перед телевизором, за компьютерным столом и так далее. Об этом ему будут сообщать свободные рецепторы.
Целью британских ученых, как они говорят сами, является создание «реальной виртуальности», то есть такой виртуальности, в которой человек не сможет узнать наверняка, находится ли он в реальном или вымышленном мире. Достичь этого планируется, в частности, с помощью шлема под названием Virtual Cocoon, который сможет возбуждать сразу же все органы чувств, включая обоняние – запах будет вырабатываться специальной электроникой, вмонтированной прямо в шлем. Разработку такого приспособления осуществляет Алан Чалмерс (Alan Chalmers) и его команда из Университета Уорика в Британии.
«Как правило, проекты виртуальной реальности предлагают осуществлять воздействие на одно или два из пяти органов чувств. Обычно это глаза и уши, - рассказывает профессор Дэвид Говард (David Howard) из Университета Йорка, возглавляющий исследование. – Мы не знаем ни одной исследовательской группы в мире, которая бы стремилась сделать то же самое, что и мы». «Как известно из биологии, запах и вкус тесно связаны, - продолжает он. – Прикасаясь к губам человека специальными стимуляторами, в сопровождении запаха, мы создадим иллюзию, будто он ест конкретную пищу. Дополнительные устройства будут отвечать за прикосновения к коже». Прототип шлема был представлен на мероприятии Pioneers 09, прошедшем 4 марта в Лондоне.
Между собой связаны не только запах и вкус, но и все другие ощущения. Одной из основных задач, которую ученым предстоит решить, заключается в том, чтобы создать виртуальную картину мира без противоречий, чтобы человек поверил в нее полностью. По словам исследователей, продажи шлема могут начаться в течение 3-5 лет. Его приблизительная стоимость составит около $3 тыс.

OCZ NIA - управляй компьютером силой мысли!

Ни для кого не секрет, что устройства ввода – самый консервативный тип компьютерной периферии. Например, те же клавиатуры так и не обзавелись за годы эволюции ничем новым, кроме дополнительных кнопок и новых материалов корпуса. Мыши тоже не претерпели серьезных изменений за последние несколько лет – разве что механику сменила более точная оптика.
Что касается чисто игровых манипуляторов, то здесь прогресс более заметен. Разные модели ориентированы на конкретные типы игр, а некоторые даже получили обратную связь, дающую ощущение отдачи от выстрела. Кроме того, рынок заполонили рули с педалями для автосимуляторов, пистолеты и даже «джедайские» мечи!
Впрочем, уже сегодня ситуация начинает меняться. Появление в массовом производстве недорогих акселерометров, выполненных в виде миниатюрных микросхем, позволило производителям начать разработку принципиально новых манипуляторов, реагирующих на изменение пространственного положения. Такие манипуляторы позволяют заменить нажатие кнопок простыми жестам – гораздо более естественными для человека.
Однако некоторые разработчики зашли по этому пути гораздо дальше – они занимаются созданием нейроманипуляторов. Мечта всех фантастов – управление машинами силой мысли – до недавнего времени казалась если и осуществимой, то лишь в отдаленном будущем. Тем не менее, на простейшем уровне управление мыслями возможно уже сегодня…

NIA.jpg

Немного теории

Далеко не все знают, что фраза «Мысль материальна!» на самом деле совсем недалека от истины. Наверняка каждый из наших читателей видел электроэнцефалограмму мозга (ЭЭГ), но откуда именно берутся эти волнообразные графики, знают далеко не все. Между тем, все очень просто: по нейронным связям мозга текут электрические токи, а мозг при этом испускает слабые электрические импульсы, которые давно уже научились обнаруживать и фиксировать. Эти импульсы представляют себой разночастотные колебания электрического потенциала. Характеристики этих ритмов или волн могут немало рассказать о заболеваниях нервной системы, но это тема отдельной беседы. Для нас прежде всего важен тот факт, что мысль действительно можно превратить в сигнал для осуществления того или иного действия. Хотя бы на уровне примитивного «да/нет».
Более подробные исследования выявили у человека несколько групп волн, различающихся частотным диапазоном и возникающих в разных состояниях работы мозга. Так, различают следующие группы ритмических колебаний:
Альфа-ритмы. Это колебания потенциала в диапазоне частот 8-13 Гц. Они возникают, когда мы отдыхаем, расслабляемся и как будто бы ни о чем не думаем. Часто можно слышать, что эти волны возникают, когда человек находится в состоянии медитации. Как только активность мозга увеличивается, альфа-ритмы сменяются бета-ритмами.
Бета-ритмы. Это колебания потенциала в диапазоне частот от 14 Гц и выше. Перьевые самописцы, применяющиеся при снятии ЭЭГ, имеют предел фиксирования 35 Гц, поэтому часто можно слышать, что бета-ритмы ограничиваются именно этой частотой, хотя это не совсем так. Эти волны возникают во время физической и умственной активности, когда вы сосредоточены и напряжены. Блокируются бета-ритмы при тактильном раздражении, а также при движении конечностей в противоположных направлениях.
Также различают гамма-ритмы (колебания потенциала с частотой выше 35 Гц, являющиеся фактически теми же бета-ритмами), дельта-ритмы (колебания потенциала с частотой 1-3,5 Гц) и тета-ритмы (колебания потенциала с частотой 4-7 Гц). Два последних типа волн возникают во время сна. Но не будем углубляться в дальнейшее изучение вопроса о ритмах мозга, а перейдем к изучению того устройства, которое попало сегодня к нам в тестовую лабораторию.

История создания

Итак, у нас на столе совершенно удивительный компактный прибор - по внешнему виду настоящий «черный ящик»! Как вы уже догадались, изготовлено это устройство американской компанией OCZ Technology, хорошо знакомой нашим читателям как изготовитель модулей памяти. Впрочем, при детальном изучении устройства становится понятно, что разработана новинка вовсе не OCZ Technology. История манипулятора NIA (Neural Impulse Actuator) корнями уходит к другой американской компании – Brain Actuated Technologies, Inc, поставляющей на рынок продукцию под маркой Brainfingers.
Эта компания после проведения ряда собственных исследований создала уникальное устройство Brainfingers System, по своей сути похожее на OCZ NIA, но обладающее большими возможностями за счет большего количества датчиков, более функционального ПО и ряда других особенностей. Лишь одна особенность мешает этому устройству пробиться на массовый рынок. Как вы, наверное, догадываетесь – это его стоимость, составляющая $2100. Кроме того, Brain Actuated Technologies предъявляет к эксплуатации своего изделия более серьезные требования, заключающиеся в регулярной покупке расходных материалов, к числу которых отностяся даже внешние датчики. Но самое интересное отличие Brainfingers System от OCZ NIA заключается в возможности приобрести пакет SDK (Software Developer’s Kit) с наглядными примерами собственных приложений на C++ и VB6, позволяющий существенно расширить возможности устройства под свои цели и задачи.
OCZ Technology, по всей видимости, взялась подготовить более коммерчески успешную версию устройства. Компания на порядок снизила цену, существенно сократив возможности устройства, обеспечила приятный дизайн и избавила потенциального пользователя от необходимости заменять расходные части. Впрочем, возможно OCZ Technology вообще ничего, кроме коробки к этому устройству не делала, а взялась лишь за «раскручивание» новинки под своим громким именем.
Так или иначе, но манипулятор NIA добрался до серийного производства, и, как говорил известный литературный герой, «отвертеться от этого факта невозможно». Основная целевая аудитория NIA – это геймеры, хотя изначально прибор ориентирован и на массового пользователя, в том числе и на инвалидов.

Потенциальные возможности

Название Neural Impulse Actuator говорит о том, что устройство является преобразователем электрических импульсов мозга в команды, пепредаваемые в компьютер через драйвера и ПО. Но первое, с чем придется столкнуться пользователю – это управление не мыслями, а мимикой - мышцами лица. Для того, чтобы научиться управлять ритмами мозга, потребуется довольно продолжительное время, а, к примеру, щелкать зубами для выстрела в игре, сможет каждый и сразу. Именно поэтому производитель и добавил в NIA этот вид управления, никак не связанный с названием устройства.
Следующий вид управления, реализованный в NIA, основан на слежении за взглядом пользователя. Нет, в данном случае речь не идет о видеокамерах или активных дисплеях, вроде применяемых в современных истребителях для наведения на цель. Все проще – устройство не переносит курсор туда, куда вы посмотрите, а лишь осуществляет какое-либо запрограммированное действие при отклонении взгляда в ту или иную сторону.
Третий, самый интересный на наш взгяд способ управления основан на регистрации колебаний электрического потенциала, возникающего в нейронных связях, конкретно – на регистрации альфа- и бета-ритмов. Мы не просто так рассказали выше о том, когда именно проявляют себя те или иные волны. Эти знания важны не только для понимания сути процессов, но еще и для самообучения. К примеру, если настроить управление одними лишь альфа-ритмами, но при этом находиться в сосредоточенном состоянии, то ничего хорошего из этого не получится. В лучшем случае виртуальный игровой персонаж не сдвинется с места.
Примечательно, что все эти три способа управления можно комбинировать между собой. К примеру, можно заставить персонаж в игре двигаться с помощью мимики, вращаться с помощью взгляда, менять оружие с помощью мозговых волн.
Сразу нужно оговориться – интерфейс фирменного ПО NIA ориентирован на игры. Пользоваться устройством, как мышкой (открывать/закрывать окна или даже путешествовать по интернет-сайтам) тоже можно – достаточно лишь настроить нужным образом новый профиль. Но в силу ряда особенностей, о которых будет рассказано ниже, такой способ управления не слишком оперативен и не очень удобен, а потому он и не выделяется производителем как приоритетный.

Комплектация и настройка

Красивая белая картонная коробка с магнитной застежкой и мягкий наполнитель с выемками в форме уложенных в него аксессуаров, недвусмысленно намекают на то, что перед нами устройство класса Hi-End.

Box_1.jpg
Коробка пестрит перечислениями возможностей и характеристик, однако вся эта информация исключительно на английском языке. Русскоговорящие пользователи смогут узнать лишь то, что в руках они держат «инновационное игровое устройство, которое переводит электрические биосигналы в компьютерные команды».

Box_2.jpg
К сожалению, та же ситуация и с инструкцией. Согласитесь, подобное устройство – это не сотовый телефон и не мышь – чтение и понимание инструкции по эксплуатации в данном случае просто необходимо. Однако, мы нашли решение этой проблемы. На интернет-форуме магазина Xmemory, представляющего новинку на российском рынке, доступна для скачивания ссылка на русскоязычный вариант инструкции. Скачать инструкцию в формате PDF можно здесь. Возможно, в скором времени в коробках с устройством появится и бумажный вариант инструкции на русском языке.
Но не спешите радоваться. Даже после того, как вы прочитаете инструкцию от корки до корки, у вас наверняка останется сотня-другая вопросов к производителю. К примеру, как именно тренировать мозг для излучения «правильных» альфа- и бета-волн. Более того, в инструкции и слова не сказано о том, что эти волны из себя представляют и при каких условиях возникают. В то время как в руководству к аналогичному, но значительно более функциональному манипулятору Brainfingers System описаны и теоретические основы, и методы освоения. Кроме инструкции в коробке с устройством был найден диск с ПО, интерфейсный кабель USB A-B, а также налобный ободок с датчиками.

Box_3.jpg

Box_4.jpg

Set.jpg

Внешний вид

Устройство представляет собой небольшую черную коробочку, изготовленную из толстостенного алюминия.

NIA_PDA.jpg
Корпус выполнен фрезеровкой, так что швов на нем вы не найдете. Съемными являются лишь две боковые грани, на каждую из которых выведено по одному разъему: USB и трехконтактный разъем для подключения налобного ободка с датчиками.

Front.jpg

Back.jpg
Стенки корпуса немного вогнуты, а углы сделаны очень острыми – новинка выглядит очень изящно и даже немного агрессивно. На столе NIA располагается на четырех резиновых ножках, приклеенных к нижней поверхности устройства.

Support.jpg
Здесь же – в днище – вырезаны шесть продолговатых отверстий, обеспечивающих пассивную вентиляцию электронных компонент устройства. За этими отверстиями видна печатная плата с маркировкой «Technology powered by Breinfingers». Активной вентиляции не предусмотрено.

Down.jpg
Налобный ободок подключается к основному блоку кабелем длиной 1,4 м. Учитывая длину интерфейсного USB-кабеля (еще 1,7 м), можно утверждать, что при игре кабели не ограничивают движений и можно позволить себе удалиться от монитора и системного блока достаточно далеко.

Sensor_1.jpg

Sensor_2.jpg
Ободок изготовлен из очень мягкого прорезиненного пластика. Концы его стягиваются, поэтому проблем с регулировкой размера возникнуть не должно. Другое дело качество изготовления ободка. Для того, чтобы разместить внутри три датчика и идущие от них провода, в ободке был сделан разрез, впоследствии запаянный. Но качество пайки, а также фиксация самих датчиков, увы, оставляют желать лучшего. Швы крайне неаккуратные, кругом видны заусенцы, а один из датчиков отклеился уже на второй день использования. Все это совсем не сочетается с высоким качеством изготовления основного блока и, по видимому, является следствием невысокой стоимости всего набора.

Sensor_3.jpg

Sensor_4.jpg
Налобный ободок сделан неразборным, ровно как и уставноленные в нем датчики – последние относятся к датчикам так называемого «сухого» типа, они не требуют смазывания гелем, используемым в качестве электролита для работы.



Установка и настройка ПО

Установка драйверов и ПО проходит без каких либо проблем, после чего в меню «Пуск» появляется программа nia, а в системной панели – соответствующая пиктограмма.Интерфейс программы разделен на две части – рабочую область и панель управления, выполненной в виде вертикального столбца с пятью крупными кнопками, вызывающие те или иные разделы настройки NIA.

Soft_Install.jpg
Интерфейс полностью англоязычный, включая не слишком подробный раздел помощи и подсказок, открывающийся при нажатии на кнопку «Tutorial». О том, как правильно одевать на голову ободок с датчиками рассказывает «3D-голова». Если учесть, что все прочие подсказки сделаны текстовыми, эта единственная анимированная инструкция выглядит не слишком искусным рекламным ходом для создания привлекающих внимание скриншотов. Между тем, раздел помощи в руководстве пользователя именуется ни много, ни мало, «анимированным учебным пособием»!

Soft_Tutorial_1.jpg

Soft_Tutorial_2.jpg
Пробежав глазами все полезные советы, приступаем к настройке NIA, для чего открываем панель Calibration. Калибровка является необходимым этапом для эффективной работы. Едва ли нужно объяснять, что все люди разные – по-разному думаюти двигаются. То есть калибровка требуется для каждого нового пользователя. Но это еще не все… У вас изменилось настроение, ваши мысли заняли какие-то личные проблемы, вы немного сдвинули датчики на лбу? Все это потребует непременной перекалибровки устройства! То есть, сделав небольшой перерыв в работе с NIA и снова одев ободок с датчиками, пользователь вынужден калибровать устройство заново. Именно поэтому производитель не наделил программу возможностью сохранения профилей для каждого пользователя в отдельности. Калибровка представляет из себя довольно простой процесс – подключаете NIA к компьютеру, одеваете датчики и нажимаете на кнопку Calibraition. Затем около двадцати секунд фокусируете свой взгляд на вращающемся виртуальном гироскопе.

Soft_Calibration_1.jpg
С первых же минут использования устройства, мы столкнулись с тем, что сигнал от датчиков (желтая линия) прыгал как сумасшедший вокруг базового уровня (красной линии).

Soft_Calibration_2.jpg
В идеале колебания сигнала должны иметь небольшую амплитуду, но даже совершенно успокоившись и расслабившись мы не смогли достичь желаемого результата. Кстати, в программе не реализовано распознавание удачной калибровки от неудачной, да и в «учебном пособии» об этом ничего не сказано – во всем приходится разбираться самостоятельно. Но проверить результаты калибровки довольно легко – достаточно запустить небольшой тест, в котором вертикальный и горизонтальный ползунки реагируют на вашу мышечную активность лица, а также направление взгляда.

Soft_Calibration_3.jpg
Решение проблемы нашлось неожиданно – выяснилось, что если крепко зажать корпус NIA в руке, то помехи и шумы пропадают, а калибровка проходит идеально с первого-второго раза! Вывод прост – устройству требуется заземление, да и все источники помех вокруг него также должны быть заземлены. Как выяснилось, это проблема не данного конкретного экземпляра, а абсолютно всех NIA. Мы решили проблему, замкнув провод от массы USB-порта устройства на батарею домашнего отопления. Безусловно, такое решение не безопасно и возможно только как временное. Всем пользователям этого устройства мы рекомендуем позаботиться о правильном подключении.
Тем не менее, наводки исчезли. Если вы используете NIA с ноутбуком, то придется подключать сетевой адаптер питания в розетку с заземлением или же использовать в качестве источника питания батарею ноутбука – только так можно избавиться от наводок. При калибровке нужно обратить внимание и на состояние вашей кожи. К примеру, если кожа чересчур сухая, калибровку вы не пройдете. Вообще, разработчики уверяют, что для нормального функционирования NIA на ее датчики не требуется наносить специальных гелей, но, видимо, в некоторых случаях применение подобного геля лишним не будет.
Далее переходим к панели Brainfingers, название которой говорит само за себя – здесь вы можете наблюдать уровни активности по всем каналам управления: взгляд, мышцы лица, три канала альфа-ритмов и три канала бета-ритмов. Этот «энцефалограф» не просто развлекает пользователя, а позволяет ему потренироваться в управлении каждым каналом в отдельности или их комбинациями.

Soft_Brainfingers.jpg
На этом этапе знакомства с прибором открылась одна крайне важная вещь – для точного управления придется научиться полностью расслабляться. Лучше всего сесть в уютное кресло, закрыть минут на пять глаза и постараться забыть обо всех своих проблемах. В противном случае положительного результата достичь не удастся.
После того, как вас перестало интересовать все вокруг, можно приступать к практическим занятиям, для чего открываем следующую закладку Practice. Здесь представлены три небольших примера, демонстрирующие возможности новинки. Первое приложение позволяет сравнивать время реакции при использовании NIA и мыши. Когда на экране появляется мишень, вы должны быстро стиснуть зубы – выстрел сделан. Кстати, в описании ничего про зубы не сказано – достаточно любой резкой реакции, так что в данном случае подход сугубо индивидуален. Если в среднем на клик мышки требуется около 0,2 с, то «зубы» выполняют туже работу (после небольшой тренировки) за 0,05-0,1 с. Правда, велик и процент ложных срабатываний, но он уменьшается по мере тренировок.

Soft_Practice_1.jpg
Второе приложение – игра в пинг-понг на разных уровнях сложности. Здесь задействуются разные группы мышц лица. К примеру, можно двигать бровями. После точной предварительной калибровки эта игра на самом легком уровне покоряется почти сразу. Для самого сложного уровня также потребуется некоторая тренировка.

Soft_Practice_2.jpg
Ну а третье приложение это отработка движений глаз в качестве команд перемещения по горизонтали.

Soft_Practice_3.jpg
Примечательно, что в примерах нигде не задействовано управление с помощью альфа- и бета-волн, как будто производитель вообще забыл о них. А ведь NIA – это прежде всего устройство для регистрации излучения мозга. Впрочем, в настройках профилей для различных игр и приложений (закладка Game Play) эти важные составляющие каналов управления не забыты. Кстати, помимо возможности создания собственных профилей, разработчики заранее подготовили и профили для таких игр как Half Life 2, Oblivion и др.

Soft_GamePlay_Profiles.jpg

Работа с устройством и его реальные возможности

Первой игрой, которая была протестирована при работе с NIA стала Half-Life 2. Для нее уже имеется готовый профиль, а потому к опытам можно приступить немедленно. Производитель советует не сильно задумываться и напрягаться для осуществления первых шагов в игре. По его словам, через минуту-две ваш организм самостоятельно нащупает основные ключи управления виртуальным персонажем. Вполне возможно, что у разработчиков так оно и было, но у большинства людей, тестировавших данный экземпляр NIA, сразу получилось лишь идти… назад. Причем, останавливаться персонаж упорно не желал. Первые удачные перемещения вперед получились только после десяти минут упорной борьбы. Все это говорит о том, что без соответствующего опыта с NIA легко будет играть лишь в пинг-понг. А на освоение более сложных действий требуется время.

Game.jpg
Что же умеет NIA? В играх от первого лица (FPS) с помощью этого устройства можно ходить вперед и назад, вращаться, стрелять, менять оружие, прыгать, приседать и так далее. Но есть одна важная особенность штатного ПО, накладывающего существенное ограничение на, казалось бы, необъятные возможности устройства. Речь идет о дискретности срабатывания – по каждому каналу управлени предусмотрено только четыре уровня.
Пример «простого джойстика», описанный в руководстве пользователя, лучше всего подходит для понимания этого вопроса. Программируя канал мышечной активности, можно установить самый низкий порог срабатывания на приседание (кнопка «C»), следующий порог на ходьбу (кнопка «W»), третий уровень присвоить прыжку (кнопка «SpaceBar»), ну а максимальное напряжение оставить на ходьбу назад (клавиша «S»).
Четыре порога срабатывания предоставляют немалые возможности. С учетом того, что всего программируется восемь каналов, в арсенале пользователя теоретически есть 32 кнопки, которых достаточно для игр любого жанра, не только FPS. Но штатное ПО позволяет одновременно настроить лишь четыре джойстика (канала).

Profiles_Edit.jpg

Profiles_Edit_1.jpg
Кроме того, наложенное тем же ПО ограничение в четыре порога срабатывания не позволяет управлять NIA так же, как и мышью. Поэтому в играх NIA полностью заменит лишь клавиатуру и кнопки мыши, но не саму мышь – наводить на цель без нее, увы, не получится.
Тем не менее, настройки фирменного ПО поначалу все равно кажутся бесконечными. Все дело тут еще и в том, что на каждый порог срабатывания можно не просто запрограммировать какую либо кнопку, но еще и указать, какой из десяти (!) возможных режимов работы ей придется осуществлять. Это может быть разовое нажатие, нажатие с отсрочкой, удерживание, включение и выключение и так даклее. К примеру, если поставить режим «Repeat hold» на прыжок, персонаж будет прыгать заданное количество времени через заданный интервал – все это настраивается для каждого действия отдельно.

Profiles_Edit_2.jpg

Profiles_Edit_3.jpg

Profiles_Edit_4.jpg

Profiles_Edit_5.jpg
Кроме того, любой заядлый игрок знает много хитростей, заключающихся в применении различных комбинаций клавиш для каждой отдельной ситуации. Самый простой пример – опять же, движение вперед с прыжками. Благодаря вышеописанным режимам нажатий клавиш, подобные комбинации без труда сможет имитировать и NIA, причем примеры некоторых ситуаций неплохо описаны в руководстве пользователя.
Интересно, что в имеющихся профилях никак не используются альфа- и бета-ритмы – джойстики по этим каналам полностью отключены. Как же в действительности обстоят дела с управлением по этим каналам? Если к управлению мышечной активностью мы более или менее приспособились уже через неделю, то для управления альфа- и бета-ритмами мозга потребуются более длительные и осмысленные тренировки. Но ведь впервые сев за FPS-игры вы тоже не сразу стали чемпионом, так ведь? Так что вряд ли можно считать минусом новинки необходимость продолжительного этапа обучения.
Увы, но сроки тестирования NIA не позволили нам овладеть мысленным управлением, впрочем кое-какие закономерности в работе с альфа- и бета-каналами проследить все-таки удалось. Для тренировки можно попробовать настроить один канал альфа- или бета-активности и поиграться с ним – думать о действии, не думать о нем и т.п. Довольно скоро положительных результатов будет больше 50%, что говорит о постепенном обучении. Причем, объяснить, что именно приходиться делать для этого практически нереально – действия и правда выполняются на подсознательном уровне. Натренировавшись с отдельными каналами, можно приступать и к их комбинациям.
С мышечной активностью все проще. Уже через неделю все действия стали выполняться на подсознательном уровне. Не нужно сильно напрягаться, чтобы сменить оружие – тело делает все само, т.к. оно уже запомнило нужное движение подобно тому, как когда-то давно запомнило необходимые движения для ходьбы. Поначалу лучше не программировать по четыре порога на каждый канал – максимум два, да и то в большом удалении друг от друга. Пока вы не научитесь дозировать уровень активности канала, вероятность ложных срабатываний будет очень высокой. Кроме того, на первых порах от игры с NIA уже через полчаса чувствуется сильная усталость. При этом персонаж напрочь отказывается подчиняться. К сожалению, данный недостаток «лечится» только долгими тренировками.
Также перед игрой нужно обратить внимание на свое эмоциональное состояние. Как уже говорилось выше, сильное напряжение и возбуждение может отрицательно сказаться на точности управления, и если еще вчера виртуальный герой подчинялся вам довольно сносно, то из-за вашего же плохого настроения сегодня он может выйти из-под контроля. Вообще, на время игры нужно научиться отключаться от внешнего мира и его проблем. К примеру, если кто-то из ваших домашних на первых порах обучения слегка вас одернет или задаст вам вопрос, с жизнью виртуального героя можно попрощаться, так как его координация движений будет нарушена – и иногда на длительный срок. Но, судя по нашему прогрессу, можно предположить, что уже через месяц другой тренировок можно с легкостью общаться со своими домашними и играть в любимые игры одновременно. Жаль вот только, что в монитор при этом смотреть все-таки придется.
Стоит сказать пару слов и о работе NIA с играми других жанров. Так, в автосимуляторах, где от мыши можно вообще отказаться, новинка обеспечит управление полностью «без рук». Нечто подобное можно организовать и в авиасимуляторах. Вообще, NIA уживается с любыми играми, в которых задействована клавиатура и кнопки мыши. Даже в операционной системе вы без труда сможете «кликать» по папкам, менять настройки, просмтривать интернет-сайты. Но перемещение курсора при этом будет осуществляться только мышью.

А что другие?

Подробно рассказав вам о принципах действия и возможностях OCZ NIA и даже упомянув компанию-прародитель Brain Actuated Technologies, мы забыли сделать небольшое отступление и сказать пару слов о потенциальных конкурентах на рынке. К сожалению, в том ценовом сегменте, в котором выступает NIA, ситуация пока не слишком радует. Похожее по своим принципам управления недорогое устройство выпустила лишь американская компания Emotiv Systems. Оно представляет из себя накладные наушники с датчиками. Стоимость новинки сравнима с NIA – около $300.
Все прочие контроллеры, которые удалось найти, не рассчитаны на массового пользователя – цены их начинаются от $2000 (как у Brainfingers) и устремляются в бесконечность. Но те устройства куда серьезнее – их возможности не ограничиваются играми и зачастую направлены на помощь инвалидам. Кстати, в японском Osaka University (Университете города Осака) давно уже ведутся исследования на тему управления имплантатами человеческих конечностей с помощью мозга, без внешнего управления. Только по словам ученых из медицинской школы нейрохирургии при Университете, для безошибочного управления требуется внутричерепное размещение листа с электродами. Так что очень даже может быть, мы стоим на пороге нового мира киборгов…
Более того, эпоха чтения мыслей тоже уже не за горами. Группа исследователей из британского University of Leicester (Университета Лейстера) утверждает, что разработала методику, определяющую по нейронной активности с большой долей вероятности, какое именно изображение видит в данный момент человек.

Подводя итоги: NIA 2?

Стоимость NIA на данный момент составляет 6 000 руб., и можно сказать наверняка, что устройство стоит этих денег! Стоит, несмотря на невысокое качество изготовления датчиков, несмотря на неминуемую борьбу пользователя с наводками и помехами, несмотря на невозможность управления курсором мыши, несмотря на скудное руководство пользователя и отсутствие поддержки со стороны производителя. Нельзя не отметить и отсутствие поддержки 64-бит систем, которые отнюдь не редкость на солидных игровых компьютерах. Кроме того, фирменному ПО требуется немало ресурсов. Для старых процессоров этот показатель крайне важен. Так, на компьютере с AMD Athlon 1200 ПО потребует около 30% рабочих ресурсов.
Несмотря на все это, NIA нельзя назвать невыгодной покупкой. Ведь за относительно небольшие деньги уже сегодня вы приобретаете интерфейс, который только в будущем получит действительно широкое распространение. Да, сегодня рано говорить об успехах NIA. Тем более, что устройство требует доработки схемы экранирования (может быть и замены датчиков) и развития возможностей фирменного ПО. Но скорее всего, NIA – это только «пробный шар».
Как ни странно, но данное устройство в том виде, в котором преподнесли нам его сегодня разработчики, больше понравится не продвинутым игрокам, а скорее тем, кто постоянно интересуется новинками в мире IT, ну и конечно, любит компьютерные игры. Среди тех, кто тестировал устройство, желание приобрести его высказал даже человек, который вообще не интересуется компьютерными играми. Поэтому нельзя рассматривать NIA, как очередную игрушку за большие деньги. Для многих этот аппарат может стать интересным объектом исследований и экспериментов.
Вне всякого сомнения, за последние несколько лет OCZ NIA – это одна из самых интересных новинок в IT-сфере, а ее появление стало заметной вехой в истории устройств ввода!

Мозговой интерфейс Emotiv EPOC представлен официально



мозговой интерфейс

На конференции Game Developers Conference компания Emotiv представила разработку под названием Emotiv EPOC. Это устройство, напоминающее экзотические наушники, оснащено электродами, с помощью которых происходит считывание сигналов, сопровождающих мыслительную активность пользователя. Полученные данные по беспроводной связи отсылаются в ПК, где используются для управления игровым процессом.
Как утверждается, Emotiv EPOC способен определить более 30 различных состояний пользователя, включая эмоциональные — увлеченность, возбуждение, напряженность, разочарование frustration; мимические — улыбку, смех, подмигивание, нахмуренные и удивленно приподнятые брови; и команды двигательной активности, такие, как «толкать», «тянуть», «поднять», «бросить», «повернуть» и другие. Доступен ряд команд, относящихся к визуальному восприятию: например, можно силой мысли сделать игровые объекты невидимыми.
Таким образом, по утверждению Emotiv Systems, ей удалось создать первый игровой манипулятор, позволяющий управлять персонажами компьютерных игр, используя мысли и эмоции пользователя. Кроме того, Emotiv EPOC имеет встроенный гироскоп, который дает возможность управлять положением курсора или ориентацией камеры с помощью движений головой.
Представленная модель является окончательным вариантом разработки, который довольно скоро будет доступен покупателям. На сайте Emotiv и у некоторых розничных поставщиков устройство должно появиться в конце текущего года по рекомендованной цене $299. Между прочим, на сайте компании уже можно сделать предварительный заказ.
Потенциал Emotiv EPOC может простираться далеко за пределы компьютерных игр. Компании Emotiv и IBM намерены исследовать возможность применения разработки в виртуальной реальности — технологии, способной найти применение в системах обучения или взаимодействия сотрудников и в других продуктах, ориентированных на корпоративных потребителей.

ВОЛНЫ СОЗНАНИЯ

Послушаем  запись духовной музыки — тибетских монахов или григорианское пение. Если вслушаться, то можно услышать, как голоса сливаются, образуя один пульсирующий тон. Это один из самых интересных эффектов, свойственных некоторым музыкальным инструментам и хору людей, поющих примерно в одной тональности — образование биений . Когда голоса или инструменты сходятся в унисон, биения замедляются, а когда расходятся — ускоряются.

    Возможно, этот эффект остался бы в сфере интересов только музыкантов, если бы не исследователь Роберт Монро. Он понял, что несмотря на широкую известность в научном мире эффекта биений, никто не исследовал воздействие их на состояние человека при прослушивании через стереонаушники. Монро открыл, что при прослушивании звуков близкой частоты по разным каналам (правому и левому) человек ощущает так называемые бинауральные биения, или бинауральные ритмы. Например, когда одно ухо слышит чистый тон с частотой 330 колебаний в секунду, а другое — чистый тон с частотой 335 колебания в секунду, полушария человеческого мозга начинают работать вместе, и в результате он “слышит” биения с частотой 335 - 330 = 5 колебания в секунду, но это не реальный внешний звук, а “фантом”. Он рождается в мозге человека только при сочетании электромагнитных волн, идущих от двух синхронно работающих полушарий мозга.

Что же происходит в мозге, когда человек «слышит» эти звуки.
В 50-е годы получил развитие метод электроэнцефалографии (ЭЭГ), позволяющий записывать и изучать биоэлектрические потенциалы мозга. Тогда же было установлено, что частота биоэлектрических колебаний мозга способна синхронизироваться, при определенных условиях, с различными ритмичными стимулами, например, импульсами сверх слабого электрического тока, световыми вспышками и звуковыми щелчками, если частота следования стимулов находится в рамках естественного диапазона частот биоэлектрических потенциалов мозга.

Легче всего мозг следует за стимулами в интервале частот 8-25Гц, но при тренировке этот интервал можно расширить на весь диапазон естественных частот мозга.

В настоящее время принято выделять четыре основных вида электрических колебаний в человеческом мозге, каждому из которых соответствует свой диапазон частот и состояние сознания, при котором он доминирует.

    Бета-волны — самые быстрые. Их частота варьируется, в классическом варианте, от 14 до 42Гц (а по некоторым современным источникам, - более чем 100 Герц). В обычном бодрствующем состоянии, когда мы с открытыми глазами наблюдаем мир вокруг себя, или сосредоточены на решении каких-то текущих проблем, эти волны, преимущественно в диапазоне от 14 до 40 Герц, доминируют в нашем мозге. Бета-волны обычно связаны с бодрствованием, пробужденностью, сосредоточенностью, познанием и, в случае их избытка, - с беспокойством, страхом и паникой. Недостаток бета-волн связан с депрессией, плохим избирательным вниманием и проблемами с запоминанием информации.

Ряд исследователей обнаружили, что некоторые люди имеют очень высокий уровень напряжения, включая высокую мощность электрической активности мозга в диапазоне быстрых бета волн, и очень низкую мощность волн релаксации в альфа и тета диапазоне. Люди такого типа так же часто демонстрируют характерное поведение, как курение, переедание, азартные игры, наркотическую или алкогольную зависимость. Это обычно успешные люди, потому что гораздо более чувствительны к внешним стимулам и реагируют на них значительно быстрее, чем остальные. Но для них ординарные события могут показаться крайне стрессовыми, заставляя искать способы понижения уровня напряжения и тревоги через прием алкоголя и наркотиков.

Повышенный уровень напряжения – это одна из разновидностей нарушения баланса нейрорегуляторов в организме. Очевидно, что у таких людей соответствующая стимуляция мозга может значительно понизить уровень бета активности и, соответственно, повысить релаксирующие альфа и тета ритмы. Например, Henry Adams , Ph . D . – основатель «Национального института ментального здоровья» ( National Institute of Mental Health ) и ведущий специалист исследовательских программ по алкоголизму в госпитале святой Элизабеты ( St . Elizabeth ' s Hospital , Washington , D . C . ) установил, что самые «горькие» пьяницы только после одной сессии альфа-тета релаксации, сопровождаемой короткими антиалкогольными внушениями, в течение последующих двух недель понизили уровень употребления алкоголя на 55%.      В интервью корреспонденту доктор Adams заявил: «… это очень эффективная методика вместе с тем проста в подготовке и применении, свободна от существенного риска, какой-либо опасности и побочных медицинских эффектов. Теперь уже доказано, что она значительно уменьшает проявления абстинентного синдрома, обеспечивает состояние глубокой релаксации и тем самым уменьшает желание принимать наркотики…».

    Альфа-волны
возникают, когда мы закрываем глаза и начинаем пассивно расслабляться, не думая ни о чем. Биоэлектрические колебания в мозге при этом замедляются, и появляются “всплески” альфа-волн, т.е. колебаний в диапазоне от 8 до 13 Герц. Если мы продолжим расслабление без фокусировки своих мыслей, альфа-волны начнут доминировать во всем мозге, и мы погрузимся в состояние приятной умиротворенности, именуемым еще “альфа-состоянием”.

Исследования показали, что стимуляция мозга в альфа-диапазоне идеально подходит для усвоения новой информации, данных, фактов, любого материала, который должен быть всегда наготове в вашей памяти.

В восточных боевых единоборствах есть такое понятие как «состояние мастера». Исследования методом ЭЭГ показали, что в этом состоянии в мозге человека преобладают альфа волны. На фоне альфа активности мозга скорость мышечной реакции в десять раз выше, чем в обычном состоянии.

На электроэнцефалограмме (ЭЭГ) здорового, не находящегося под влиянием стресса человека, альфа-волн всегда много. Недостаток их может быть признаком стресса, неспособности к полноценному отдыху и эффективному обучению, а так же свидетельством о нарушениях в деятельности мозга или болезни. Именно в альфа-состоянии человеческий мозг продуцирует больше вета-эндорфинов и энкефалинов – собственных «наркотиков», отвечающих за радость, отдых и уменьшение боли. Также альфа волны являются своеобразным мостиком - обеспечивают связь сознания с подсознанием. Многочисленными исследованиями методом ЭЭГ установлено, что люди, пережившие в детстве события, связанные с сильными душевными травмами, имеют подавленную альфа активность мозга. Аналогичную картину электрической деятельности мозга можно наблюдать и у людей, страдающих посттравматическим синдромом, полученным в результате военных действий или экологических катастроф.
Поскольку в альфа-диапазоне лежит сенсорно-моторный ритм, то становится понятным – почему у людей, страдающих посттравматическим синдромом, затруднен произвольный доступ к чувственно-образным представлениям (на которых, кстати, строится вся традиционная безлекарственная психотерапия) или некоторые методики развития экстрасенсорных способностей
Пристрастие некоторых людей к алкоголю и наркотикам объясняется тем, что эти люди не способны генерировать достаточное количество альфа-волн в обычном состоянии, в то время как в состоянии наркотического или алкогольного опьянения, мощность электрической активности мозга, в альфа-диапазоне, у них резко возрастает.

    Тета-волны
появляются, когда спокойное, умиротворенное бодрствование переходит в сонливость. Колебания в мозге становятся более медленными и ритмичными, в диапазоне от 4 до 8 Герц. Это состояние называют еще “сумеречным”, поскольку в нем человек находится между сном и бодрствованием. Часто оно сопровождается видением неожиданных, сноподобных образов, сопровождаемых яркими воспоминаниями, особенно детскими. Тета-состояние открывает доступ к содержимому бессознательной части ума, свободным ассоциациям, неожиданным озарениям, творческим идеям.

С другой стороны, тета-диапазон (4-7 колебаний в секунду) идеален для некритического принятия внешних установок, поскольку его ритмы уменьшают действие соответствующих защитных психических механизмов и дают возможность трансформирующей информации проникнуть глубоко в подсознание. То есть чтобы сообщения, призванные изменить ваше поведение или отношение к окружающим, проникли в подсознание, не подвергаясь критической оценке, свойственной бодрствующему состоянию, лучше всего наложить их на ритмы тета-диапазона.

Этому психофизиологическому состоянию (похожему на гипнотические состояния картиной распределения и сочетания электрических потенциалов головного мозга) в 1848 Френчмен Маури дал название гипнагогическое (от греческого hipnos = сон и agnogeus = проводник, ведущий). В каждой Восточной философско-эзотерической школе “гипнагогия” использовалась веками для творчества и самосовершенствования, были тщательно разработаны психотехники и ритуалы для достижения этого состояния и существуют подробные классификации психофизиологических феноменов, ему сопутствующих.
Заметим, что применение гипнагогии не ограничивается Восточными религиями. История донесла до нас, что такие известные личности, как Аристотель, Брамс, Пуччини, Вагнер, Франциск Гойа, Ницше, Эдгар Алан По, Чарлз Диккенс, Сальвадор Дали, Генри Форд, Томас Эдисон и Альберт Эйнштейн намеренно использовали гипнагогию для своего творчества, используя технику, которую описал еще Аристотель.

Например, Эдисон трудился над своими изобретениями в очень напряженном режиме. Когда же в своих размышлениях он заходил в тупик, то садился в свое любимое кресло, брал металлический шар в руку (которую свободно опускал вдоль кресла) и засыпал. Заснув, он непроизвольно выпускал шар из руки и грохот падающего на пол шара будил его, и очень часто он просыпался со свежими идеями относительно проекта, над которым работал.

    Дельта-волны
начинают доминировать, когда мы погружаемся в сон. Они еще медленнее, чем тета-волны, поскольку имеют частоту менее 4 колебаний в секунду. Большинство из нас при доминировании в мозге дельта-волн находятся либо в сонном, либо в каком-то другом бессознательном состоянии. Тем не менее, появляется все больше данных о том, что некоторые люди могут находиться в дельта-состоянии, не теряя осознанности. Как правило, это ассоциируется с глубокими трансовыми или “нефизическими” состояниями. Примечательно, что именно в этом состоянии наш мозг выделяет наибольшие количества гормона роста, а в организме наиболее интенсивно идут процессы самовосстановления и самоисцеления.

Недавними исследованиями установлено, что, как только человек проявляет действительную заинтересованность чем-либо, то мощность биоэлектрической активности мозга в дельта-диапазоне значительно возрастает (наряду с бета-активностью).

    Современные методы компьютерного анализа электрической активности мозга позволили установить, что в состоянии бодрствования в мозге присутствуют частоты абсолютно всех диапазонов, причем чем эффективней работа мозга, тем большая когерентность (синхронность) колебаний наблюдается во всех диапазонах в симметричных зонах обоих полушарий мозга.

ФАРМАКОЛОГИЧЕСКИЕ СРЕДСТВА, влияющие на психическую деятельность


Воздействуя на медиаторные системы различных отделов мозга психотропными препаратами, можно вызвать не только усиление или угнетение возбудительного и тормозного процессов, но и изменения со стороны психики, умственной работоспособности и эмоционального поведения больного.
В группу психотропных препаратов входят:
1) нейролептики (антипсихотические средства);
2) транквилизаторы;
3) седативные средства;
4) антидепрессанты;
5) препараты лития;
6) ноотропные средства;
7) психостимуляторы.

Нейролептики
оказывают успокаивающее действие с уменьшением реакции на внешние стимулы, ослаблением психомоторного возбуждения и напряженности. Они подавляют чувство страха, бред, галлюцинации. Механизм действия нейролептиков основан на их угнетающем действии на ретикулярную формацию и ее активирующем влиянии на кору больших полушарий, а также на взаимодействии нейролептиков с медиаторными системами мозга: адрен-, серотонин-, холин-, ГАМК- и особенно с дофа-минергическими.

Антипсихотическая активность нейролептиков (аминазина, левомепромазина) обусловлена их угнетающим влиянием на но-радренергические рецепторы, на дофаминовые рецепторы черной субстанции, полосатого тела, лимбической системы мозга (фторфеназин, галоперидолидр.).

Транквилизаторы
(от лат. tranquilloare - делать спокойным, безразличным) применяются в основном при неврозах для устранения эмоциональной напряженности, тревоги и страха. Кроме антифобического они обладают гипнотическим, миорелаксант-ным и противосудорожным действием. Транквилизаторы уменьшают возбудимость подкорковых структур мозга (лимбической системы, таламуса, гипоталамуса) и тормозят взаимодействие между этими структурами и корой больших полушарий. Кроме того, эти препараты тормозят полисинаптические спинальные рефлексы и вызывают миорелаксацию. В лечебной практике нашли применение такие препараты этой группы, как элениум (хлозе-пид), диазепам (реланиум), феназепам, амизил, мебикар и др.

Седативные средства
оказывают менее выраженный успокаивающий и антифобический эффект, чем транквилизаторы, не вызывают миорелаксации. Они оказывают регулирующее влияние на процессы возбуждения и торможения в мозге и применяются в амбулаторной практике для лечения легких невротических состояний. К ним относятся прежде всего препараты растительного происхождения (из корня валерианы, пустырника).

Антидепрессанты
- это препараты, оказывающие положительное влияние на настроение и общее психическое состояние больного. При депрессивных состояниях наблюдается снижение активности норадренергической и серотонинергической синап-тической передачи. Поэтому действие антидепрессантов основано на их ингибировании моноаминоксидазы (МАО) - фермента, вызывающего инактивацию моноаминов (норадреналина, дофа-мина, серотонина). Подавление активности МАО приводит к накоплению моноаминов и улучшению синаптической передачи в структурах мозга. К таким препаратам относятся: ниаламид, пи-разидол, бефол и др.

Кроме того, существуют антидепрессанты - ингибиторы обратного нейронального захвата избирательно или норадреналина, или серотонина, или дофамина (азафен).

Препараты лития
(лития карбонат, лития оксибутират) получили широкое применение для лечения эндогенных аффективных заболеваний, для купирования острого маниакального возбуждения у психических больных. В больших дозах литий понижает содержание в мозге серотонина и повышает чувствительность нейронов гиппокампа и других областей мозга к действию дофамина, влияя на нейрохимические процессы в нервной ткани.

Ноотропные средства
(пирацетам, аминалон, натрия оксибутират, фенибут и др.) - это группа препаратов, оказывающих специфическое активирующее влияние на интегративную деятельность мозга, улучшает память, обучение и познавательную деятельность, облегчает передачу информации между полушариями головного мозга, повышает устойчивость мозга к гипоксии.

В связи с тем, что основной представитель препаратов этой группы - пирацетам является синтетическим аналогом тормозного медиатора ГАМК, надо полагать, что пирацетам способен усиливать тормозные процессы в мозге. Кроме того, этот препарат усиливает синтез дофамина и повышает уровень норадрена-лина, некоторые ноотропы увеличивают содержание ацетилхоли-на и серотонина в нервной ткани. Особенностью ноотропов является их стимулирующее влияние на метаболические и биоэнергетические процессы в нервных клетках.

Ноотропы используются для стабилизации нарушенных функций мозга при психических заболеваниях, у пожилых людей и детей для лечения сосудистых и метаболических нарушений мозга.

В группу психостимуляторов центральной нервной системы помимо аналептиков и препаратов, действующих на спинной мозг, входят психомоторные стимуляторы (кофеин, фенамин и др.), активирующие биоэлектрическую активность мозга, повышающие физическую и умственную работоспособность, уменьшающие усталость и сонливость. Механизм действия этих препаратов связывают с их способностью стимулировать синтез циклического АМФ, который участвует во всех метаболических процессах.

ПОСТИГАЯ БЕСКОНЕЧНОСТЬ

Впервые с этим эффектом столкнулись исследователи полярных областей в ясную солнечную погоду. Внезапно все поле зрения становилось серым, исчезали все краски, затем появлялась пульсация, которая неожиданно взрывалась ярким калейдоскопом удивительных красок и образов. Визуальные эффекты сопровождались чувством глубокого покоя и умиротворения.

      Затем этот эффект перекочевал в лаборатории. Поскольку он всегда надежно воспроизводился, то в 30-е годы прошлого века, наверное, только самый ленивый физиолог не экспериментировал с… шариками для пинг-понга, разрезая их пополам, накладывая на глаза подопытным кроликам - то бишь студентам-добровольцам, и направляя на половинки шариков яркий свет.

      Эффект получил свое название: Ganzfeld Phenomena (total-field phenomena) - эффект бесконечного поля зрения и надолго поселился в физиологических и психологических лабораториях - в основном как средство надежного и быстрого достижения глубокой релаксации. Механизм его до конца не понятен. Есть предположение, что когда мозг сталкивается с бесконечным полем зрения, лишенным каких-либо контрастных деталей, зрительный анализатор отключается, а мозг переходит на "любование" самим собой. Возможно, в результате значительно "тормозится" логическое полушарие мозга (обычно - левое), которое в принципе не способно взаимодействовать с бесконечностью, - это прерогатива гештальт полушария (обычно правого), которое, соответственно, активируется.

      В 80-е годы прошлого столетия ganzfeld эффектом заинтересовались парапсихологи. Они исходили из предположения, что экстрасенсорные сигналы, воспринимаемые человеком, обычно "забиты" сенсорным шумом. И поскольку ganzfeld эффект позволяет отключить зрительный анализатор, одновременно обеспечивая хорошую релаксацию, то есть основания предполагать, что на фоне этого эффекта экстрасенсорные сигналы будут проявляться гораздо четче. Их предположения полностью подтвердились в пилотажных исследованиях. Например, вероятность выбрать правильно одну заданную карту из четырех равна 25%, а в ходе экспериментов с ganzfeld эффектом эта вероятность оказалась равной 35%. Неискушенному читателю прибавка в 10% может показаться весьма незначительной. Но с точки зрения теории вероятности это воистину гигантская прибавка. То есть, вероятность случайного совпадения получается равна одному случаю на биллион. Или, что, наверное, понятней любому читателю, - человек, способный демонстрировать этот феномен, так сказать, на постоянной основе, мог бы запросто разорить любой игорный дом.

      Результаты оказались столь значительными, что привлекли широкое внимание общественности и известных ученых из различных областей науки. Но методики проведения экспериментов были подвергнуты жесточайшей критике на предмет возможных искажений и даже фальсификаций. Однако перспективы манили, поэтому, с учетом прозвучавшей критики, была разработана методика эксперимента с соблюдением всех научных норм и правил. В 1983 и 1989 годах Хонортон (Honorton) с коллегами провел серию новых телепатических экспериментов по выработанным жестким правилам. Ход экспериментов контролировался компьютером, который случайным образом выбирал экземпляры из 160-и статических (фотографии, картины, символы) и динамических (1 минутные видеофрагменты из рекламных клипов, мультфильмов, телевизионных шоу и т.д.) объектов, предназначенных для телепатической передачи. Эксперименты проводились под бдительным надзором нескольких дюжин парапсихологов, физиологов, физиков, психологов, включая известных критиков пси-феноменов. Кроме того, в качестве наблюдателей присутствовало два известных фокусника, специализирующихся в своих выступлениях на симуляции пси-феноменов, - для исключения возможности тайной передачи реципиентам информации от других участников экспериментов.

      В общей сложности в 354-х сессиях из 11-и независимых экспериментов в качестве реципиентов приняло участие 100 мужчин и 140 женщин. Эти эксперименты полностью подтвердили удивительные данные, полученные на стадии пилотажных исследований. Дополнительно было установлено, что с экстрасенсорным восприятием лучше обстоят дела у женщин, адептов различных психопрактик и просто у людей творческого труда, таких как художники и актеры. Кроме того, было отмечено значительно более точное восприятие динамических объектов, по сравнению со статическими. Результаты эксперимента были опубликованы Хонортоном в Журнале Парапсихологии (Journal of Parapsychology) в 1990 году. А полный обзор по исследованию ganzfeld эффекта в парапсихологии был представлен Бимом и Хонортоном в 1994 году в январском выпуске Psychological Bulletin of the American Psychological Association (Bem & Honorton, 1994; Honorton et al., 1990).

      Результаты экспериментов получили широкую общественную огласку, поэтому предприниматели и изобретатели дружно взялись за дело и выпустили в широкую продажу несколько устройств от самых простых и можно сказать примитивных защитных очков с различными светофильтрами (для активизации определенных чакр) до более-менее сложных устройств с люминесцирующими экранами.
ВИЗУАЛЬНЫЕ ЭФФЕКТЫ ВИЗУАЛЬНЫЕ ЭФФЕКТЫ
      Тем не менее, получить действительно ровное "бесконечное" поле зрения не так-то просто и большинство таких очков этого не обеспечивали. Естественно это сказывалось на эффекте в худшую сторону. Однако следует помнить, что все описанные выше эксперименты были осуществлены с тривиальными шариками для пинг-понга, разрезанными пополам (под края половинок дополнительно подкладывается вата).

      Поскольку одним из эффектов ganzfeld феномена является глубокая мышечная релаксация и чувство умиротворения, в настоящее время эта процедура применяется в основном для работы со стрессом. Одно из наиболее эффективных устройств так и называлось: "Stress Shield" (щит от стресса).
В настоящее время бум прошел, и на рынке (в интернете) имеется всего одно устройство: "Morning StarLight personal/private light screen". Это устройство совмещает в себе эффект светотерапии и ganzfeld эффект. Действие его основано на принципе электролюминесценции.

      Между двух прозрачных пластиковых пластин помещен слой люминофора, который начинает светиться, когда к нему приложено переменное напряжение. Яркость свечения определяется составом люминофора, величиной и частотой изменения напряжения. В результате прозрачный люминесцентный экран испускает холодный белый свет, спектральный состав которого очень близок к спектральному составу лучей восходящего солнца (исключая ультрафиолет). Все это встроено в обычные солнцезащитные очки (см. фотографию выше).
Светотерапия используется для успешного лечения различных ментальных, эмоциональных и физических проблем и для расширения человеческого потенциала:
- релаксация и медитация;
- избавление от дистресса;
- лечение сезонных аффективных расстройств (SAD);
- нормализация суточных ритмов при перемещении в другой часовой пояс;
- лечение бессонницы;
- быстрый отдых;
- самогипноз для лечения и обучения;
- когнитивная терапия;
- снижение тревожности;
- развитие творческого мышления;
- избавление от аллергии.

      Устройство помогает даже начинающим медитировать людям естественным образом быстро (в считанные минуты) достигать глубоких медитативных состояний. Эти медитативные состояния могут служить хорошей отправной точкой для самогипноза и когнитивной терапии.
По оценкам экспертов, более 10 миллионов американцев страдают от сезонных аффективных расстройств (SAD). Попросту говоря, - от депрессий, связанных с сезонными изменениями в природе. Наиболее распространены зимние депрессии. Еще 35 миллионов американцев страдают от зимних депрессий, выраженных в более мягкой форме. Среди страдающих зимними депрессиями значительно больше женщин, чем мужчин. Интересно, а какова статистика у нас в России. Исходя из симптоматики SAD, подозреваю, что россияне относят все это на счет "объективной реальности".

      Симптоматика SAD хорошо изучена: повышенная сонливость, пристрастие к мучному, набор веса, снижение полового влечения, апатия, ощущение безнадежности, избегание социальных контактов. Причем, чем севернее проживает человек, тем острее выражена симптоматика.
В конце прошлого века было установлено, что достаточно интенсивный белый свет помогает полностью избавиться от симптомов зимней хандры.

      Устройство: "Morning StarLight personal/private light screen" обеспечивает освещенность люминесцирующего экрана более чем в 250 Люкс, генерируя мягкий (без ультрафиолета) холодный белый свет, абсолютно безопасный для глаз. Источником энергии служит 9-и вольтовая батарея или сетевой адаптер. Устройство не привлекает чужого внимания, поскольку выглядит как обычные солнцезащитные очки.

      Автору совсем не хотелось рекламировать заморский девайс, но, как говорится: "на безрыбье и сам…" Хотя, надеюсь, принципы, изложенные в статье, просты и понятны, и не перевелись еще на Руси талантливые умельцы.

      В принципе, как только человеческий мозг сталкивается с чем-нибудь по форме напоминающим бесконечность (хм…) очень быстро происходит активация правого полушария (гештальт полушария) и человек погружается в измененные состояния сознания, как говорится, - со всеми вытекающими... На этом, например, основан старинный метод гадания с двумя зеркалами и зажженной свечей. Свеча устанавливается между зеркалами таким образом, чтобы в результате переотражения в зеркалах получилась бесконечная дорожка из свечей. Между прочим, пламя свечи мерцает с частотой альфа ритма человеческого мозга (8-13Гц), что, безусловно, способствует погружению в медитативное состояние. Вместо свечи можно использовать светодиоды, или жидкокристаллические цветные панели.

      В общем, дерзайте и обрящете! А, обретя, "поделитесь с ближними, а то дальний придет и съест…" (Евангелие от Митьков)
Андрей Патрушев